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Masonry parapets are designed to provide protection for road users. This guidance document is designed to bring 
up to date previous advice on the design, assessment and strengthening of masonry parapets, drawing together 
guidance previously available in BS 6779:1999 Part 4 and in research papers, and bringing the terminology used in 
line with that used in BS EN 1317-2:1998 and BS EN 1996-1-1:2005. 
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Accident Severity   the degree to which there is personal injury. 

  a Masonry Parapet which consists of stone blocks laid in courses with thin joints. The 
facing may occasionally be clad with another material to improve visual appearance. The blocks will generally 
extend between the inner and outer faces of the wall. 

  
 

  a person injured as a result of an accident. 

  the ability to prevent a breach of the system when impacted under specified conditions. 

  a Masonry Parapet which consists of multi-sized natural stone units constructed 
predominantly without mortar joints. The stones may be coursed or un-coursed and there are likely to be occasional 
through stones inter-linking the two faces of the wall. 

  a vehicle which is out of the control of the driver. 

  an accident in which one or more persons is killed or dies within 30 days of the accident. 

ge Goods Vehicle (LGV   a vehicle over 3.5 tonnes in weight. 

P   a parapet constructed of brickwork or stone or concrete blocks, with or without mortar. 
Masonry parapets may be constructed using a variety of materials and may be Unreinforced or Reinforced. 

  a safety barrier installed on the edge of a bridge or on a retaining wall or similar structure where there 
is a vertical drop and which may include additional protection and restraint for pedestrians and other road users. 

  a Masonry Parapet which consists of multi-sized natural stone units with thick 
mortared joints. The stones may be coursed or un-coursed. In general this kind of parapet will have a mortared core 
with occasional stones passing through the core. 

  a Masonry Parapet with additional reinforcing elements incorporated.  

  general name for vehicle restraint system and pedestrian restraint system used on the 
road. 

Safety Fence   a flexible metal safety barrier. 

  the severity of the most severely injured casualty (fatal, serious or slight). Of a 
casualty: killed, seriously injured or slightly injured. 

 - a Masonry Parapet which does not incorporate reinforcement. 
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Masonry parapets were in most cases originally constructed to protect pedestrians and livestock from precipitous 
drops but are now frequently called upon to contain errant vehicles.  

To better understand the mode of behaviour of masonry parapets when subjected to vehicle impacts, research was 
initiated in the 1990s by the County Surveyors Society (now ADEPT), leading to a County Surveyors Society 
guidance document [1] and subsequently to BS 6779:1999 Part 4 [2]. Following the County Surveyors Society 
initiated research, academic research undertaken at the Universities of Liverpool, Sheffield and Teesside was 
undertaken. This research led to the development of improved numerical models and also indicated the types of 
upgrading strategies that would be most beneficial. The present guidance document incorporates these findings. 

The terminology used in the present document has also been updated so as to be consistent with that used in the 
relevant Euro norms (e.g. BS EN 1317:1998 Part 2 [3]).  

Masonry parapets have generally been built directly onto supporting structural elements, without any special 
provision for anchorage. Individual blocks or sections of masonry may be dislodged during a vehicle impact event. 
An assessment of the possible injury or damage risk from ejected masonry can be used to determine the 
acceptability of the use of an unreinforced masonry parapet at a particular site. A recommended risk assessment 
methodology is provided in Chapter 6. 

Vehicle containment levels are related to defined vehicle impacts. For unreinforced masonry parapets only 
containment levels N1 and N2 (as defined in BS EN 1317:1998 Part 2) are considered explicitly in this document 
since higher levels of containment cannot generally be achieved.  

Key objectives are to ensure parapets are capable of: 

- providing specified levels of containment to limit the penetration by errant vehicles, and reducing the risk of 
such vehicles overtopping the parapet or overturning; 

- protecting other highway users by either redirecting vehicles on to a path close to the line of the parapet, or 
arresting the vehicle motion with acceptable deceleration forces; 

- protecting those in the vicinity of a parapet by ensuring any masonry ejected does not lead to disproportionate 
consequences. 

 

It is possible to provide designs that meet the above objectives. In unreinforced masonry parapets much of the 
momentum from an impacting vehicle is transferred into the masonry, with the extent of masonry involved largely 
governed by the geometry of the wall and the unit-mortar bond strength (see Chapter 3). The criteria for 
unreinforced masonry parapets are, therefore, based on the materials of construction and dimensions of the 
parapets. 

Due to the very diverse nature of masonry parapets it is not normally practicable to undertake conventional 
acceptance testing, as would be common for proprietary steel or reinforced concrete designs. The present guidance 
document is therefore designed to provide a practical alternative to acceptance testing.  

In producing the parapet performance charts contained in this guidance document many sophisticated non-linear 
finite element simulations have been performed, allowing the performance of an impacting vehicle and the masonry 
to be characterised for a broad range of parameters. 

1 Introduction 



 

Management of Parapets 
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2.1 Asset management 

Asset management issues have been extensively treated in other guidance documents and hence are not 
considered here in detail. Useful reference documents that are available at the time of writing include:  

CIRIA C656 [4]: Masonry arch bridges: condition appraisal and remedial treatment. Although written specifically for 
masonry arch bridges, this includes much about asset management, maintenance management, and environmental 
considerations. 

CIRIA C676 [5]: Drystone retaining walls and their modifications  condition appraisal and remedial treatment. This 
includes guidelines on asset management and whole life cost methods. 

PAS 55-1:2008 Asset management [6]. Part 1 - Specification for the optimised management of physical 
infrastructure assets; Part 2 - Guidelines for the application of Part 1. Standardisation of asset management as a 
specification, with information on implementing asset management distilled into key requirements.  

Code of Practice on Transport Infrastructure Assets [7]: Guidance to Support Asset Management, Financial 
Management and Reporting (2010):  This Code of Practice from The Chartered Institute of Public Finance and 
Accounting (CIPFA) provides guidance on the development and use of financial information to support asset 
management, financial management and reporting of local highways infrastructure assets. 

The UK Roads Liaison Group [8] has published four documents produced by the UK Roads Board, giving guidance 
on asset management; the guidance comprises four documents forming a suite which provides a good overview of 
asset management. The four documents are available from: http://www.ukroadsliaisongroup.org and include: 

- Highway Asset Management Quick Start Guidance Note  getting started  
- Highway Asset Management Quick Start Guidance Note  risk assessment  
- Highway Asset Management Quick Start Guidance Note  levels of service  
- Highway Asset Management Quick Start Guidance Note  life cycle planning  

 
Any practitioner dealing with any aspect of masonry parapets will also need to refer to the relevant local 
maintenance organisation or responsible body, who are likely to have their own internal system. 
   

2.2 Environmental Considerations 

Guidance can be found in the CIRIA C656, Masonry Arch Bridges: condition appraisal and remedial treatment and 
C676, Drystone walls.  

The environmental aspects listed in CIRIA C676 are:  
- Air pollution 
- Noise pollution 
- Water pollution 
- Soil and waste 
- Discharge of water from any drainage system associated with the wall. 
- Visual effects 
- Land-use 
- Flora and Fauna, particularly rare and endangered species 
- Consumption of limited resources (materials and energy) 

2 Management of Parapets 
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2.3 Planning Considerations

Cultural heritage, landscape and ecological issues can all influence choice of materials and methods used in 
parapet construction, as indicated in Tables 1, 2 and 3 respectively.

Note that statutory organisations are marked with an asterisk (*). 

In addition to the Primary Legislations listed means that some work to 
bridges will not be prevented. Reference documents for this include the following: 

England and Wales Department for Communities and Local 
Government.

Scotland: The Town and Country Planning (General Permitted Development) (Scotland) Order 1992.

Northern Ireland: The Planning (Environmental Impact Assessment) Regulations (Northern Ireland) 1999 
(S.R.1999 No. 73).









 

Unreinforced Masonry Parapets 
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3.1 Design 

3.1.1 Overview 
Unreinforced masonry parapets can provide an attractive, cost-effective and generally low maintenance means of 
protecting road users from precipitous drops on bridges, retaining structures and on steeply sloping ground. 
However, unreinforced masonry parapets typically have only a modest ability to contain errant vehicles and this 
guidance has been developed to enable engineers involved in the design of new or replacement masonry parapets 
to maximise the potential of this form of construction. An indication of the levels of wall debris that can be expected 
to be ejected during an impact event is also provided (derived from numerical modelling studies - see Appendix A 
for more details). 

3.1.2 Geometric properties of parapets 
In order to comply with the latest codes of practice for containment structures, masonry parapets should have a 
minimum length of 10 metres, or in cases where joints are present a minimum panel length between joints of 10 
metres. 

Irrespective of the curvature of the road, the parapet should have a minimum radius on the traffic face of 15 metres. 

Paragraph 4.23 of TD19/06 [9] specifies the following: (note that italicized text is used to indicate a direct quote) 

The height of vehicle parapets must be measured above the adjoining paved surface and must not be less 
than the following: 

1000mma For vehicle parapets except as below 

1250mm For all bridges and structures over railways carrying motorways, or roads to motorway 
standards, from which pedestrians, animals, cycles and vehicles drawn by animals are 
excluded by order 

1500mm For all other bridges and structures over railways, except as below 

1400mm For cycleways immediately adjacent to the vehicle parapet 

1500mm For accommodation bridges 

1500mm For very high containment level applications 

1800mm For bridleways or equestrian usage immediately adjacent to the vehicle parapet 

1800mm For automated railways and where there is a known vandalism problem over railways 

aN.B. although the minimum height of 1000mm  is accepted by TD19/06, it is less than the minimum of 1150mm 
 

 

Where the height of a parapet must be less than 1000mm then consideration should be given to the possibility of the 
errant vehicle overtopping the parapet. If other roadside items exist adjacent to the parapet that can cause an errant 
vehicle to gain height (e.g. raised kerbs, pavements, etc.) then the parapet performance charts provided within this 
document may erroneously indicate that the errant vehicle is likely to be contained. 

 

3 Unreinforced Masonry Parapets 
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3.1.3 Curved parapets
As noted in BS6779 part 4, for curved sections of parapets the potential beneficial effects of arching action will be 
increased on the convex face and decreased on the concave face. For sections of parapets where the radius of 
curvature exceeds 15 metres then the resultant decrease in arching action on the concave face will generally be 
negligible. Furthermore, as only the convex faces of the smaller radius curved walls sometimes used at the ends of 
masonry parapets are generally exposed to traffic, these will generally not reduce containment capacity and will also 
serve to reduce the likelihood of head on impact (see section 3.1.9).

3.1.4 Surface finish of parapets
BS6779 part 4 provides the following advice on surface finishes:

The front face profile should be either vertical or uniformly inclined away from the traffic, from the base to the
top of the parapet at an angle not exceeding 5°.

Where the masonry on the front face of the parapet has an irregular surface finish (e.g. concrete core stone 
face parapets), the maximum difference between the steps should not be more than 30mm when measured
with respect to a plane taken through the peaks. This plane should be flat for straight parapets and curved to 
follow the nominal parapet curvature for parapets which are curved on plan.

TD 19/06
least 1.5m above the adjacent carriageway level, where the definition is given as:  

lar surface finish subject to the maximum 
amplitude of the steps and undulations in the surface not exceeding 30mm when measured with respect to a 
plane through the peaks. The plane must be broadly parallel to the road alignment. A structure that has a 
25mm wide chamfered construction joint in its surface would be regarded as smooth.

3.1.5 Parapet copings
Where pedestrians have access adjacent to the parapet, and there is a significant risk of injury due to people
climbing on the parapet, a steeple coping or other suitably shaped coping, should be provided on the top face.
Provision of steeple copings is mandatory on bridges over railways where there is access to pedestrians (Figure 1).

Figure 1  Parapet steeple coping: typical details (after BS 6779-4 [2])

Clause 9.17 of TD 19/06 requires that stone or precast copings used with pedestrian parapets must be secured to 
the concrete backing by fixings capable or resisting at the ultimate limit state a horizontal force of 33 kN per metre of 
coping.
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3.1.6 Movement joints 
For long walls constructed with high strength mortar (see definition in Table 4) the use of movement joints may be 
necessary. Further guidance is provided in Appendix D.  

3.1.7 The use of bed joint reinforcement 
The use of bed joint reinforcement is not recommended as recent laboratory tests have indicated that its use can be 
counterproductive, and can potentially cause premature fragmentation of the parapet into small pieces [10].  

3.1.8 Damp proof course 
The possible use of a damp proof course is commented on in Clause 6.7.2.1.3 of BS6779 part 4. However, 
where a damp proof course is considered to be necessary, provision of low permeability masonry units near the 
base of the parapet should be used in preference to a DPC membrane. (Alternatively a special high bond strength 
DPC membrane could be employed.)  

3.1.9 Protection to ends of parapets 
BS6779 part 4 provides the following guidance on protection to the ends of parapets: 

Where there is a safety fence which terminates at a parapet the safety fence should be provided with a 
connection or anchorage system capable of resisting an ultimate longitudinal tensile force of not less than 
330kN. The safety fence should extend along the parapet for not less than 1m from the end of the parapet. 
The connection to the parapet should be recessed, or the section of the parapet to the rear of an anchorage 
system should be set back, such that the front face of the safety fence is flush with the front face of the 
parapet, with due regard to any irregular surface finish and the projection allowances of clause 6.5 [refer to 
Section 3.1.4 above]. 

Unreinforced masonry parapets designed in accordance with this guidance document resist impact forces 
applied to the parapet at not less than 1m from the parapet end. Impacts within 1m of the end of the parapet 
may lead to excessive penetration and ook u  which may cause the vehicle to spin. Hence the requirement 
for safety fence protection where present over the first metre length of the parapet with suitable stiffening to 
the fence on the approaches, which can be achieved by providing post spacings at reduced centres. 

An alternative to terminating and providing an anchorage to the safety fence, which may be particularly 
suitable for short span structures, is to attach the beam element of the safety fence directly to the front face of 
the parapet throughout its length so that it is in close contact with the face. Stand-off brackets should not be 
used in order to avoid point loading. Connections should be provided in the safety fence beam, if necessary at 
expansion joints, which are capable of transmitting a longitudinal tensile force of at least 330kN. 

Where there is no safety fence at the end of the parapet, such precautions as are practicable under the 
circumstances should be taken to prevent errant vehicles colliding with the end of the parapet. 

One method of reducing the risk of an end on collision and to increase the containment performance of the 
end section is to curve the ends of the parapet away from the edge of the highway. 

Curving the ends of the parapet increases the containment capacity on the curved portion due to the 
increased strength arising from the curvature, but could increase the angle of impact of an errant vehicle. It 
has been demonstrated by computer modelling that the increased containment provided by the curvature 
more than offsets the increased potential angle of impact providing the radius of the curvature on the inside 
face of the parapet is not less than 3m and the angle subtended by a parapet so curved does not exceed 40° 
approximately (i.e. length of curve for a 3m radius not greater than 2m approximately), giving a maximum 
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offset of about 0.67m to the end of the parapet. A larger radius curve with a smaller angle subtended will 
provide adequate containment but it is recommended that the end parapet is offset a minimum of 0.5m by the 
curvature. 

Reference should also be made to TD19/06 [9], including the requirement for a safety barrier to be provided on each 
approach and departure end of the vehicle parapet to prevent direct impact (TD19/06 paragraph 3.30).  

 

3.2 Assessment 

When assessing an unreinforced masonry parapet it is necessary to first establish the form of construction of the 
wall and to then assess its condition; further guidance is provided in Chapter 5. Once this has been established the 
impact performance of the wall can be determined according to the advice given in Section 3.3. 

 

3.3 Impact performance of unreinforced masonry parapets 

3.3.1 Background 
Unreinforced masonry parapets resist applied impact loadings as a result of (i) unit-mortar adhesion, which inhibits 
formation of initial cracks, followed by (ii) in-plane arching action, with (iii) inertial effects and (iv) frictional forces 
respectively delaying and potentially arresting subsequent movements. The degree to which these can be relied 
upon depends on the particular form of construction involved (e.g. in the case of dry-stone construction (i) and (ii) 
will be negligible or non-existent). In general unreinforced masonry parapets are built directly on top of a supporting 
element (e.g. the superstructure of a bridge) without provision of anchorage. The basic mechanics of impact are 
outlined in Appendix B. 

Masonry parapets have some limitations with regards to their containment, and experience and tests have all 
illustrated that masonry can become detached during impact and therefore debris is likely to be ejected onto 
adjacent sites, potentially causing disruption of services and possibly injury. In most cases masonry parapets will 
have inadequate capacity to contain Large Goods Vehicles (LGVs), resulting in either penetration of the errant 
vehicle or an errant vehicle running over the parapet if this is low. 

3.3.2 Performance by parapet material 

a) Brickwork parapets 
Parapets constructed of brickwork may have good mechanical strength as there are mortared joints and the 
courses of brickwork are also mortared together. Brickwork parapets frequently possess significant unit-mortar 
adhesion, which inhibits crack formation and ensures eventual failure involves the formation of large panels of 
masonry between fractures. However, in the case of brickwork parapets with very low unit-mortar adhesion, 
failure will typically involve a punching failure mode, with ejection of individual brick units. Numerical 
investigations have indicated that th

-
present [11]. 

b) Ashlar stone or concrete block parapets 
Parapets constructed of ashlar stone or concrete blocks have in general high mass but typically very weak unit-
mortar bond strength. A moderate impact loading can be resisted by arching action. 
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c) Rubble stone parapets 
Rubble stone parapets typically comprise rough stone facings and a mortared core. Their weakness lies in the 
weak bond between the individual stone units which are a variety of sizes. A moderate impact loading can be 
resisted by arching action, but if mortar joints are not well filled, or if the mortar-bond is very low, then arching 
action may not develop.  

d) Dry stone parapets 
Parapets of dry stone have a very high mass but generally no mechanical strength due to the absence of 
mortared core and mortared joints. In dry stone parapets the presence of open joints means that the beneficial 
effects of the longitudinal arching action are unlikely to be developed. Therefore, dry stone masonry parapets will 
primarily resist impact forces by the inertia of the parapet. Upon impact, dry stone parapets will typically be 
damaged by punching through of the stones. 

3.3.3 Parapet performance charts 

a) Mortared parapets  
Parapet performance charts have been developed for the design of new parapets and for the assessment of existing 
parapets, provided there are no significant defects in the parapet and the construction details are known. The 
charts, shown in Figure 2 and Figure 3, allow both the ability of a given parapet to contain a vehicle and the likely 
extent of ejected debris to be determined from the indicated mean debris exit velocity. 

-mortar bond strength is given in Table 4.  

Where data on the characteristic shear strengths between particular masonry units and mortar are not available, 
conservative values should be assumed or appropriate values determined from sample tests (BS EN 1052-3) [12] or 
in-situ tests (see section 5.2.2). Note that the values given in the National Annex of BS EN 1996-3 [13] for brickwork 

-mortar adhesion can 
in some cases be satisfied by using an M4 (1:1:6) mortar in accordance with the UK National Annex of BS EN 1996-
1-1[13], in conjunction with a class B engineering clay brick). For intermediate characteristic unit-mortar bond 
strengths, linear interpolation between the values given in Figure 2(a) and Figure 2(b), and Figure 3(a) and Figure 
3(b), is permitted. Parapets built using bed-joint reinforcement should conservatively be assessed on the 

-mortar bond strength is present. 

Note also that for parapets less than the minimum height of 800mm or greater than the maximum height of 1.8 m, 
the containment capacity may be obtained by extrapolation from the values plotted on the parapet performance 
charts. It should however be recognized that where parapets are lower than 1000mm there is a risk of overtopping, 
particularly for large wheeled vehicles where there are kerbs in front of the parapet. This has not been considered in 
the derivation of the charts.  
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(a) Low unit-mortar bond strength

(b) High unit-mortar bond strength

Figure 2  Parapet performance chart: N1 (80km/h) containment for mortared parapets of various height, 
H (mm) (density: 2200kg/m3)
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(a) Low unit-mortar bond strength

(b) High unit-mortar bond strength

Figure 3  Parapet performance chart: N2 (110km/h) containment for mortared parapets of various height, H 
(mm) (density: 2200kg/m3)
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Table 4 - Criteria for unreinforced masonry parapets assessed or designed in accordance with Figure 2 and 
Figure 3: 

Property Unit-mortar adhesion 

High Low 

Minimum characteristic initial unit-mortar 
shear bond strength 

0.6 N/mm2 0.1 N/mm2 

Minimum unit-mortar coefficient of 
friction  

0.6 0.6 

 

b) Drystone parapets 

A conventional containment chart for drystone parapets is provided in Appendix E. Note that this chart gives no 
indication of debris exit velocity, which is likely to be at least as great as that indicated in Figure 2(a) and Figure 
3(a), but will in practice depend on the precise form of wall construction (e.g. size of stones, degree to which 
interlocking allows spreading of impact load). 

 

3.3.4 Influence of key parameters 

a) Wall length 
The parapet performance charts have been prepared for 10m long walls subject to impact 1m from the leading end 
of the wall.  

For parapets which are longer than 10m, or for parapets subjected to impact nearer the middle of the wall, the 
indicated performance is likely to be conservative, both in terms of containment and in terms of the velocity of 
ejected debris. However, the degree of conservatism will often be relatively low; for example, numerical studies 
have indicated that the required thickness of a 1m high parapet impacted 4m from its mid-length is only 5 percent 
greater when the wall length is 10m rather than 20  

Conversely walls which are shorter than 10m, or for walls impacted near the trailing end of the wall, the indicated 
performance is likely to be non-conservative. It should also be borne in mind that very short walls can fail due to 
overturning. 

b) Shear resistance 
Where parapets are being rebuilt the bedding joints should provide a shear resistance at least equal to that which 
would be provided by friction, assuming a coefficient of friction of 0.6, to a minimum depth of 0.6H below the 
adjoining paved surface (where H = the parapet height). 

The bedding mortar in masonry parapets is sometimes subject to a loss of strength due to weathering at the level of 
the adjoining paved surface. The parapet performance charts are, therefore, based on the assumption that only 
negligible bond strength is present at the level of the adjoining paved surface, together with friction, and assuming a 
coefficient of friction of 0.6.  
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The parapet performance charts have been derived assuming the perpend joints in the masonry are continuous 
through the thickness of the parapet, for example, as in ashlar stone masonry construction. Improved containment 
capacities, giving higher margins of safety, may be obtained where bond patterns in which the perpend joints are 
not continuous throughout the parapet thickness are used. 

c) Parapet density 
The density referred to in the parapet performance charts refers to the combined density of the masonry units and 
jointing material and should therefore be calculated based on the gross wall volume.  

For all wall densities which are higher or lower than 2200kg/m3 the parapet thickness required to contain a vehicle 
can conservatively be taken as the thickness determined from the chart x (2200 / effective density of masonry to be 
used). Similarly, the debris exit velocity can conservatively be taken as the debris exit velocity from the chart x 
(2200 / effective density of masonry to be used). 

 

d) Vehicle speed and impact severity 
The parapet performance charts (Figures 2 and 3) show that increasing the vehicle speed from 80km/h to 110km/h 
does not greatly affect whether or not a vehicle is contained. This is principally because although the impulse 
applied to the wall will be greater during a 110km/h impact event, correspondingly more masonry will generally be 
available to resist the impulse, due to movement of the vehicle parallel to the wall during a 20° impact event.  

However, the mean debris exit velocity will increase with vehicle speed, and the impact severity level [3] will 
These values have been derived from Accident Severity Index (ASI) 

values determined from the numerical models; refer to Appendix C for more details. 

(Note that the containment curves given in BS6779-4 incorporate occupant safety issues and so mask the 
comparative insensitivity of wall behaviour to vehicle speed; refer to Appendix A and Appendix B for further 
information on this.) 

 

 



 

Reinforced Masonry parapets 
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4.1 Overview 

Unreinforced masonry parapets will often be found to be incapable of containing vehicles. Various options exist for 
parapet strengthening including parapet reconstruction and in-situ strengthening.  
 
Parapet reconstruction schemes may involve pre-cast or in-situ reinforced concrete parapet units, potentially tied 
together across the bridge deck. A variation on the plain reinforced concrete solution is provision of a brick / 
concrete sandwich type parapet, comprising outer faces of brickwork with an in-situ reinforced concrete core. 
Although this form of parapet may have lower capacity than a conventional reinforced concrete version, it does offer 
a solution which can be aesthetically compatible with the existing structure. Such parapets can be designed using 
the same principles applied to reinforced concrete parapets and are therefore outside the scope of this guidance 
document. 
 
Existing masonry and brickwork parapets can also be strengthened by introducing reinforcement into the existing 
structure; this is the focus of this section, which provides a brief review of recent research undertaken, and provides 
good practice guidance. 
 
Hobbs et. al. 2009 [10] undertook a study of the effectiveness of various different methods of reinforcing masonry 
parapets. Considerations included: influence of reinforcement on mechanical behaviour, durability, ease of 
installation and aesthetics. Reinforcement types investigated included: bed joint reinforcement and two drilled-in 
reinforcement systems (a proprietary anchor system comprising grouted vertical and horizontal tendons and a 
generic system utilising diagonal bars bonded into pre-drilled holes in the parapet using epoxy resin).  
 
The results of the testing programme indicated that bed joint reinforcement can increase the tendency for a masonry 
parapet to fragment into small pieces on impact, and therefore it was concluded that the use of bed joint 
reinforcement should be avoided in parapets. This is particularly important in the case of masonry parapets in highly 
populated areas, where flying debris could cause death or injury.  
 
In contrast it was found that drilled-in reinforcement could significantly improve the containment capacity of masonry 
parapets. Significantly, it was found that the performance of an unreinforced parapet constructed with very weak 
mortar (low adhesion) could be significantly enhanced by the introduction of drilled-in diagonal reinforcement, which 
changed the behaviour of the parapet from a brittle punching failure mode to a ductile one. 
 

4.2 Available Reinforcing Systems 

The following reinforcing systems have been identified as enhancing the overall containment capacity of masonry 
parapets: 
 
a) Anchor systems 
Typically these are proprietary products which offer horizontal and diagonal reinforcement. They offer a very good 
solution as work can be undertaken with minimum road clearances that will not grossly affect the live traffic.  
 
b) Epoxy bonded bars 
This is another novel solution. Its main advantage is that drilling is only undertaken from the top face of the parapet 
and therefore it avoids any potential problems from having to undertake very long horizontal drilling. In addition, the 
technique can also readily be applied to curved parapets. 

4 Reinforced Masonry Parapets 
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c) Externally bonded reinforcement 
Externally bonded reinforcement has been used successfully in other engineering applications. The reinforcement is 
usually made out of various polymers to increase the tensile resistance of the structural member. With regards to 
masonry parapets, research on the use of externally bonded reinforcement is limited. The primary consideration with 
regards to their use is the surface roughness of masonry parapets and the potential for tearing off during installation 
or during an impact event. 
 

4.3 Anchorage to underlying bridge superstructure 

The danger of disproportionate damage (e.g. collapse of a connected part of the bridge superstructure) in the case 
of a severe impact means that provision of structural elements which mechanically fix a masonry parapet to the 
underlying bridge superstructure is not usually recommended and is therefore not considered further here.  

 

4.4 Reinforcement within parapet only 

Reinforcement can be provided to ensure that an existing or new parapet performs as a single large panel when 
impacted. This means that as a minimum -mortar bond strength parapet performance charts [Figure 
2(b) and Figure 3(b)] can be used, or alternatively the performance can be derived using a simple rigid-body 
dynamics representation of the parapet.  

To achieve this, the following suggested design approach can be employed: 

- Consider a notional out-of-plane force applied at the end of the wall (normally the most critical location for 
out-of-plane loading). 

- Calculate the moment of resistance of the wall cross section required to allow the whole wall rotational 
base sliding mode to be activated without the wall failing in flexure, assuming base friction forces 
opposing wall movements are applied along the full length of the wall (method detailed in Appendix F, 
section F.2) . 

- Provide reinforcement close to the mid-thickness surface to provide the required moment of resistance, 
applying suitable partial factors, and ensuring adequate reinforcement anchorage lengths are employed.  

The use of overlapping diagonal reinforcement has been found to be especially effective for this application (e.g. 
Figure 4); sample design calculations are provided in Appendix F. 
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Figure 4  Example diagonal bar reinforcement layout 

 
It should be noted that there are limits on the level of containment which will be achievable using the approach 
described above, and it is for example unrealistic to expect that containment levels significantly greater than N2 
level will be achievable. Furthermore, without anchorage there is the potential for the whole parapet to overturn or 
slide off the bridge superstructure following impact. If higher levels of containment are required then recourse to 
alternative solutions is therefore recommended (e.g. provision of a brick / concrete sandwich type parapet). 

 

4.5 Durability of Reinforcement 

The success and durability of reinforcing existing masonry parapets relies largely on the durability of the 
reinforcement. When steel reinforcement is used it is recommended that the reinforcement receives a corrosion 
protection coating at the workshop, prior to installation. It is also important to ensure that grout injection is complete 
through the pre-formed cavities as the presence of voids in the grout can affect the durability of the system. 
 
The use of polymer reinforcing bars such as FRP (fibre) or GFRP (glass) has the advantage of improved durability. 
Polymers are not affected by atmospheric corrosion to the same degree as steel. However, attention should be paid 
to detailing to protect the reinforcement from environmental effects such as water, frost etc. Severe exposure of the 
polymers may result in weathering of the material with subsequent reduced mechanical properties. 



 

Condition Appraisal 
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5.1 Introduction 

The mode of response of a masonry parapet subjected to a vehicle impact is influenced by the integrity of the 
masonry and on the unit-mortar bond strength. It is therefore useful to establish as reliably as possible the nature 
and condition of the masonry, including the mortar joints. 

Intrusive and non-intrusive testing techniques relevant to the investigation of parapet walls are shown on Table 5. 
 

5.2 Appraisal 

5.2.1 Visual inspection 

Masonry is generally a long-lived, highly durable material. However, parapets tend to be very exposed and are 
therefore susceptible to a wide variety of potential problems, some of which can be identified in a visual inspection. 
These may include: 

Moisture saturation 
Freeze-thaw cycling 
Physical salt attack 
Sulphate attack 
Leaching of mortar 
Biological attack 
Repair with unsympathetic materials 
Expansion and contraction (from thermal and wetting and drying cycles) 

 
Further general guidance on the above is provided in CIRIA C656: Masonry Arch Bridges: condition appraisal and 
remedial treatment [4].  

In addition to the problems listed above, there may be evidence that the parapet has been previously subjected to 
an errant vehicle impact event, and cracks resulting from this may still be evident. Clearly the wall may perform 
poorly if a subsequent vehicle impact occurs close to such cracks, though this needs to be set against the likelihood 
of the parapet being impacted at a specific location. 

 

5.2.2 Non-intrusive testing techniques 

Various non-intrusive testing techniques for masonry have been proposed. For example, using electromagnetic 
wave propagation, Surface Penetrating Radar (SPR) can identify the presence of voids or steel within the masonry. 
Also, Infrared Thermography can distinguish between hollow and grout-filled cells in masonry using principals of 
thermal energy absorption. Thermography is often combined with either SPR or use of a covermeter (pachometer) 
[14].  

 

5.2.3 Intrusive testing techniques 

Coring and boroscopy are potentially useful to help the engineer understand more about the internal construction of 
a given parapet whilst in-situ jacking is designed to provide quantitative information on the unit-mortar bond 

5 Condition Appraisal 
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strength. This may for example be useful when assessing an existing brickwork parapet which narrowly fails to meet 
a given performance threshold (see Section 3.3) when using a conservative assumed strength.  

The nature of masonry is that it is the sum of many parts, and in fact none of these tests are likely to produce a 
result that provides a truly reliable indication of the characteristics of the wall as a whole. Of those listed, the test by 
jacking is most likely to produce a result which is representative, if undertaken at a representative number of 
locations. However, this test also has the disadvantage that it is likely to be at least slightly destructive and requires 
special equipment that needs to be calibrated. The use of a specialist testing contractor for this would usually be 
considered prudent, although this is not absolutely necessary.  
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Table 5: Summary of in-situ testing techniques [15] 

Method Description Use of Results Advantages/disadvantages 

Surface 
Penetrating 
Radar 

Use of the properties of 
electromagnetic wave, and 
how they reflect or penetrate 
different materials  

Identify size and depth 
of void, presence of 
reinforcement 

Cannot distinguish diameters of steel 
bars.  
Requires expert interpretations 

Infrared 
Thermography 

Uses principles of thermal 
energy absorption. 

Distinguish between 
hollow and grout-filled 
cells 

Cannot detect presence of steel. 
Best used in combination with SPR 
or cover meter. 

Coring and 
analysis of 
small diameter 
cores 

Small diameter cores are 
drilled from the structure and 
analysed visually or in a 
laboratory 

Identifying materials 
Hidden geometry 
Quantification of 
material properties 
Calibration of other tests 

Reliable results 
Provides only localised information 
Slightly destructive, and needs to be 
repaired 

Boroscopy 

A small camera is inserted 
into boreholes drilled in the 
structure allowing a detailed 
study within its depth 

Identifying materials 
Detection of cavities and 
defects 
Calibration of other tests 

Reliable results 
Provides only localised information  
Slightly destructive, and needs to be 
repaired 

Chemical 
analysis and 
petrological 
examination 

Detailed characterisation of 
masonry materials taken 
from cores using microscopy 
and/or specialist chemical 
analysis techniques 

Determination of cement 
content of mortar.  
Matching of materials for 
repairs 

Specialist technique requiring expert 
interpretation 
Strength estimates may not be 
accurate 

In-situ jacking 
to establish 
shear-bond 
strength 

A calibrated hydraulic jack is 
pressurised in a void 
adjacent to a masonry unit 
which has been freed from 
adjacent masonry except for 
bedding planes. (e.g. see 
ASTM C1531-09)  

Estimation of initial unit-
mortar bond strength 

Results not always reliable 
Provides only localised information  
Slightly destructive, and needs to be 
repaired 

  



 

Risk Assessment 
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6.1 Introduction

The most important information required by an assessing engineer will often be whether or not a given parapet is 
likely to be able to contain a given errant vehicle. For unreinforced parapets this is dealt with in section 3.3, and in 
particular in sub-section 3.3.3

Further to the assessment of containment, a risk assessment can be carried out to determine the risk of death or 
injury to the vehicle occupants and users of property in the vicinity of a parapet following an impact event. This
assessment can be used to justify or otherwise the use of a given type of parapet at a particular site.

6.2 Basis of Method

The method presented herein uses of the well-known risk equation, i.e.:

                 

death per 100 million hours of exposure to a given activity. A key benefit of using FAR is that it allows different 
activities to be compared, e.g. see the following Table 3 for FAR values for common activities [16]:

Table 6: Fatal Accident Rate (FAR) for common activities

Activity FAR

Travel by bus 1

Travel by car or by air 15

Walking beside a road 20

Travel by motorcycle 300

Travel by helicopter 500

Using this approach, FAR values for a group of assessed masonry parapets can for example be collated to produce 

6.3 impact

Reliable site data, if available, can be used to furnish return periods for impact events of prescribed severity, 
generally TC80, TC110, TL60, as summarised in Table 7:

6 Risk Assessment
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Table 7: Return Period Nomenclature

Return period Vehicle type Speed

TC80 Car 80km/h

TC110 Car 110km/h

TL60 LGV 60km/h

Where site data is not available the approach given in Appendix G can be used to furnish return periods TC80, TC110,
TL60.

6.4

6.4.1 General
6.3 can be established:

Whether the errant vehicle is contained (Figures 2 and 3).

How far ejected debris is spread (calculated from mean debris exit velocity see Section 6.4.3).

6.4.2 Consequence of failure to contain a vehicle
If a vehicle is not contained then this can normally be assumed to result in a single fatality, though a greater (or 
lesser) number of fatalities can be assumed depending on site conditions.

6.4.3 Consequence of wall debris ejection
Following a vehicle impact event, individual pieces or large panels of masonry will often become ejected or 
dislodged. The consequence of debris ejection can be serious when properties within range are occupied. The 
extent of the spread of debris, d, as defined in Figure 5, can be taken from Table 8.
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Figure 5  Extent of debris spread: definition

Extent of debris spread, d

Height above datum, h
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Table 8: Extent of debris spread: values of d

Mean debris exit velocity (m/s)
(from Figure 2 or 3)

Height above datum h (to mid-height of parapet)

2m 4m 6m 8m 10m

1 1 2 2 3 3

2 3 4 4 5 6

3 4 5 7 8 9

4 5 7 9 10 11

5 6 9 11 13 14

6 8 11 13 15 17

7 9 13 15 18 20

8 10 14 18 20 23

9 11 16 20 23 26

10 13 18 22 26 29

11 14 20 24 28 31

12 15 22 27 31 34

Notes: 

i. Values calculated assuming (i) debris is ejected horizontally and in free flight; (ii) the extent of debris spread d

is taken as twice the mean value, calculated from: 81.92hvd .

ii. It is recommended that the resulting extent of debris spread is rounded up to a whole number.

6.5 Road over road: 

Direct and indirect impacts on vulnerable vehicles:

on Figure 6.



40 Guidance on the Design, Assessment and Strengthening of Masonry Parapets on Highway Structures 

 

 

Figure 6  Definition of direct and indirect Impacts 

(a) Direct impact with debris 

This is the likelihood of a vulnerable vehicle being directly struck by falling debris.  

The spacing between vulnerable vehicles = (speed of travel) / (rate of flow) and can be calculated or taken from a 
equation G3 (Appendix G).  

The number of vulnerable vehicles directly struck by falling debris Ndirect will equal the extent of the debris spread d 
divided by the spacing between vehicles (assuming the length of vehicle is comparatively short). Ndirect can be 
calculated from equation G4 (Appendix G). 

(b) Indirect impact with debris 

Nindirect is the number of vulnerable vehicles not able to slow down to a safe speed in time to avoid hitting debris, and 
can calculated from equation G5 (Appendix G).  

 

The total number of vulnerable vehicles affected by the errant vehicle impact event, Ntotal: 

 

Ntotal  =     Nerrant   +  Ndirect  +  Nindirect     [equation 1] 

 

Where Nerrant  is taken as 0 or 1 depending on whether the original errant vehicle is contained or not.
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6.6 Road over rail 

For road over rail, the calculation for direct and indirect impact as done for road over road is more difficult, and it is 
suggested instead to use a risk  railway by 

 [17], as shown in Table 9:  (A similar method is also used in IAN 97/07 [18]) 

Table 9: Factors for road over rail; incursion risk ranking 

Permissible Line Speed and Track Alignment 

Score 1 for straight track up to 45mph 
Score 4 for straight track up to 75mph or curved up to 45mph. 
Score 8 for straight track up to 90mph or curved up to 75mph. 
Score 12 for straight track up to 100mph or curved up to 90mph. 
Score 16 for straight track up to 125mph or curved up to 100mph. 
Score 20 for straight track up to 140mph or curved up to 125mph. 
Score 24 for straight track above 140mph or curved up to 125mph. 

Type of Rail Traffic 

Score 1 for Non-Dangerous Goods Freight 
Score 3 for Loco-Hauled Stock 
Score 5 for Sliding Door Multiple Units (up to 100mph) or Dangerous Good Freight 
Score 7 for Slam Door Multiple Unit or Sliding Door Multiple Units (over 100mph) 
Score 11 for Light Rail 

Volume of Rail Traffic 

Score 1 for seldom used route (fewer than 500 trains per year) 
Score 3 for lightly used route (501 to 3000 trains per year) 
Score 5 for medium use route (3,001 to 10,000 trains per year) 
Score 8 for heavily used routes (10,0001 to 50,000 trains per year) 
Score 12 for very heavily used route (more than 50,000 trains per year) 

 

Using this Table, the minimum score would be 3, and the maximum is 47. 

With reference to Formula F1:  Ndirect  = (score from Table 9) / 47   [equation 2] 

 (An example of use is given in Appendix J)  
 

6.7 Calculated FAR value 

The absolute risk can now be determined by computing the Fatal Accident Rate (FAR) value: 

FAR  = 100,000,000 / [T0 / Ntotal]                       [equation 3] 

      Where:   T0 is the return period (from Section 6.3, converted into hours) 

Ntotal is total number of vehicles affected by the errant vehicle impact event 



42 Guidance on the Design, Assessment and Strengthening of Masonry Parapets on Highway Structures 

Note that in Formula F2 it is implicitly assumed that there will be one fatality per vehicle, though a greater (or lesser) 
number of fatalities per vehicle can be assumed depending on site conditions. Further information about car 
occupancy is obtainable from the DfT document  [19]. 

6.8 Flowcharts and example calculations 

Flowcharts and sample calculations which demonstrate how a FAR value is calculated are provided in Appendices I 
and J.  
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A.1 Background 

To support the development of the original County Surveyors Society Guidance Note on masonry parapets [1] 
(which led to the development of BS 6779-4 [2]) various full-scale vehicle impact tests were undertaken together 
with parallel numerical modelling studies, undertaken using the general-purpose dynamic finite element package 
LS-DYNA.  

However when this modelling work was undertaken (in the early 1990s), understanding of the fundamental response 
of masonry subject to impact loadings was relatively poor and the numerical models necessarily incorporated many 
simplifications (e.g. artificially high values for the unit mortar shear and tensile strengths had to be used to ensure 
good correlation with the wall test results). Because the full vehicle wall interaction problem is undeniably complex, 
it was also found to be difficult to properly isolate masonry response from vehicle response. These issues were 
addressed in subsequent EPSRC funded research work, as outlined in the next section.  

A.2 Findings from EPSRC funded research work 

EPSRC funded research undertaken after the original County Surveyors Society work involved the use of 
alternative, more controllable, laboratory test apparatus which allowed the fundamental mode of response of 
masonry walls to impact loading to be better understood.  

Furthermore, it was realised that provided masonry joints are modelled in a suitably detailed way (e.g. including joint 
 properties in the 

numerical models in order to achieve good correlation with the parapet wall test results [11].  

The research also indicated that:  

i. Unit-mortar adhesion is important: 
a. if unit-mortar adhesion is above a given threshold then walls will fail due to the formation of fracture 

lines delineating large panels, with subsequent resistance provided by in-plane arching action and 
base friction; 

b. conversely walls with low unit-mortar adhesion are prone to punching failure, with large numbers of 
individual masonry units ejected from the wall. 

ii. Blockwork and brickwork walls will often behave broadly similarly. 
iii. Walls containing low unit-mortar adhesion can be strengthened using diagonal bars, which transforms the 

mode of response to one involving large panels rather than punching failure. 
 

A.3 Modelling undertaken for the present guide 

Completely new modelling studies were undertaken to underpin the present guidance document, using the 
numerical model described in Burnett et al. [11].  

The objectives of the new modelling studies were to: 

i. Verify, and if necessary amend, results from the previous modelling studies. 

ii. Record the extent of debris ejected following impact. 

iii. Allow the behaviour of walls not modelled previously to be investigated (e.g. tall walls). 

 

 

 

 

Appendix A  Numerical Modelling 
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Parapet models 

Stretcher bonded blockwork (with a face area of 400x200xthickness and half blocks at wall ends) was used for all 
simulations, to represent both brickwork and stone masonry parapets. Details of the parameters used in the model 
are shown in Table A1. 
 

Table A1:  Parapet model parameters 

Parameter Value Notes 

Density (kg/m3) 2200  

Elastic modulus (kN/mm2) 20 
Elastic material used, with non-linearity confined 
to joints 

 0.3  

Joint coefficient of friction 0.6 
Supplemented by dilatant coefficient of friction of 
0.1 (active to 0.8mm shear displacement) 

Joint shear strength Varies 
Fracture energy with exponential softening; 
limiting displacement 0.65mm 

Joint tensile strength 0.7 x joint shear strength 
Fracture energy with exponential softening; 
limiting displacement 0.15mm 

Base shear strength 0.1 x joint shear strength Reduced value to account for weathering etc. 

Base tensile strength 0.7 x base shear strength Reduced value to account for weathering etc. 

Base coefficient of friction 0.6 
Supplemented by dilatant coefficient of friction of 
0.1 (active to 0.8mm shear displacement) 

 

Vehicle model 

Various standard vehicles from the U.S. based National Crash Analysis Centre were investigated. However, these 
increased the run-time and, because of the particulate nature of many of the masonry wall failures, mid-analysis 
failures caused by overlapping vehicle/masonry elements were frequent. Hence for the runs undertaken here the 
same simplified vehicle model as used for the original CSS work underpinning BS6779-4 was used. Details of the 
model are shown in Table A2. 

 

Table A2:  Vehicle model parameters 

Parameter Value Notes 

Density (kg/m3) 480 / 190 Values for front / back of vehicle respectively 

Shear modulus (N/mm2) 76.9  

Yield strength (N/mm2) 0.2  

Hardening modulus (N/mm2) 0.02  

Bulk modulus (N/mm2) 167  
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Validation

The numerical model was validated using:

- Laboratory test data collected during the course of the EPSRC funded research work [20]
- MIRA tests undertaken for the original CSS-funded project [1].

Models run 

A total of 120 model simulations were performed to generate the parapet performance charts included in the present 
guidance document; the key parameters investigated are shown in Table A3.

Table A3 Modelling simulations performed

Speeds (km/h)
Mortar shear-bond 
strength (N/mm2)

Wall height (m) Wall thickness (m)

80

110

1.2

0.6

0.1

0.8

1.0

1.2

1.8

0.2

0.3

0.4

0.5

0.6

Results interpretation

Containment

Vehicles were assumed to be contained provided that penetration of the front of the vehicle was not greater than the 
parapet wall thickness (note that MIRA tests indicated that when penetration was significant there was a tendency 

parallel numerical modelling studies).

Mean debris velocity

The mean debris exit velocity was calculated as follows:

movingm

KE
v

2

Where KE is the kinetic energy of the wall, mmoving is the mass of moving blocks (threshold: 0.5m/s or greater). It was 
found that the mean debris exit velocity typically reached a plateau at a time of 0.3 seconds after the impact event 
and hence the velocity was calculated at this time in all cases. (Note that for wall failure modes involving formation 
of large panels of masonry this assumption is likely to lead to a slight over-estimate the actual exit velocity, since the 
effect of base friction and/or the tendency for wall panels to potentially later rock backwards are both ignored).

Maximum debris velocity

The maximum velocity of the ejected debris was also taken from each model. However the values obtained 
appeared quite variable and the maximum debris exit velocity used in the parapet performance charts is twice the 
mean debris exit velocity. Figure A1 shows the relationship between the measured and assumed debris exit 
velocities, indicating that the assumption is generally conservative.
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Figure A1 Relationship between measured and assumed maximum debris exit velocities

A.4 Sample results from numerical simulations

Results from sample numerical simulations of impacts on masonry parapets are shown on Figures A2-A5; these
illustrate the wide range of failure mechanisms likely to be encountered.

A.5 Influence of shear-bond strength

Although 
-mortar bond strength (e.g. see Figure A2), in terms of containment and debris ejection,

differences between the responses were found to be generally very small, with walls employing the trong unit-
mortar bond not always performing more favourably. Given of variability of individual numerical models it was
considered pragmatic to combine the unit-mortar bond category, as 
described in Section 3 of this guidance document.

A.6 Comparison with BS6779-4

Parapet thicknesses required to contain a vehicle differ from those presented previously in BS6779-4, as indicated 
in Table A4 and Table A5 for 80km/h and 110km/h impacts respectively.

The differences appear to be due to the following issues:

In the new numerical models, which have been validated against carefully controlled laboratory tests,
significant strength arises from the micro-scale behaviour of joints, and in particular the initial dilation which 

inertia . Hence the influence of parapet density is increased (i.e. relative to bond-
strength).

Because of the increased influence of parapet density, conservative results for low density parapets can 
justifiably now be calculated by scaling, although this may introduce some conservatism. 

In the new simulations it was found that higher vehicle speed did not necessarily adversely affect the ability 
of a parapet to contain a vehicle (see Appendix B.5 for a discussion of the physics underlying this
phenomenon).

In BS6779-4 a partial factor of 2.0 is applied to the bond strength for design purposes; no such factor is 
introduced here.
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Table A4  Comparison of BS6779-4 and current required wall thickness for vehicle containment (1m high wall, 80km/h) 

Current 
masonry 
strength 

descriptor 

BS6779-4 
masonry 
strength 

descriptor 

Required wall thickness (mm) 

BS6779-4 Current 

Wall density 

2200kg/m3 

Wall density 

1300kg/m3 

Wall density 

2200kg/m3 

Wall density 

1300kg/m3 

 

 275 340 

285 480* 

 315 350 

  350 500 350 590* 

 
* obtained by scaling, as described in section 3.3.4 

 
 
Table A5 - Comparison of BS6779-4 and current required wall thickness for vehicle containment (1m high wall, 110km/h) 

Current 
masonry 
strength 

descriptor 

BS6779-4 
masonry 
strength 

descriptor 

Required wall thickness (mm) 

BS6779-4 Current 

Wall density 

2200kg/m3 

Wall density 

1300kg/m3 

Wall density 

2200kg/m3 

Wall density 

1300kg/m3 

 

 340 425 

285 480* 

 390 445 

  435 >600 350 590* 

 
* obtained by scaling, as described in section 3.3.4 
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(a) High (V80-H1000-T400-S@160mS) 

 

(b) Medium (V80-H1000-T400-M@160mS) 

 
(c) Low (V80-H1000-T400-W@160mS) 

 

Figure A2 - -mortar adhesion at 160mS 

(Key: Velocity-Height-Thickness-Strong/Medium/Weak adhesion @ time) 
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(a) High (V80-H1000-T400-S@450mS) 

 

(b) Medium (V80-H1000-T400-M@450mS) 

 

(c) Low (V80-H1000-T400-W@450mS) 
 

Figure A3 - -mortar adhesion at 450mS 

(Key: Velocity-Height-Thickness-Strong/Medium/Weak adhesion @ time) 
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(a) Thin wall with high unit-mortar adhesion at 85mS (V80-H1800-T200-S@85mS) 

 

(b) Thin wall with high unit-mortar adhesion at 145mS (V80-H1800-T200-S@145mS) 

 

(c) Medium unit-mortar adhesion at 430mS (V80-H1800-T400-M@430mS) 
 

Figure A4 - 1.8m high walls: various thickness, strength and time configurations (Key: Velocity-Height-

Thickness-Strong/Medium/Weak adhesion @ time) 
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(a) Low unit-mortar adhesion at 105mS (V80-H1800-T400-W@105mS) 

 

(b) Low unit-mortar adhesion at 405mS (V80-H1800-T400-W@405mS) 

 

(c) Low unit-mortar adhesion at 600mS (V80-H1800-T400-W@600mS) 
 

Figure A5 - 1.8m high walls: low unit-mortar strength at various times (Key: Velocity-Height-Thickness-

Strong/Medium/Weak adhesion @ time) 
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B.1  Introduction 
This Appendix provides simplified calculations which describe the fundamental mechanics of a vehicle impact event. 
(Although the example calculations presented describe car impacts, the same basic principles can potentially be 
applied to non-articulated goods vehicle impacts.) 

B.2  General approach 
So-
useful when modelling masonry parapets. This is because masonry parapets typically have low flexural strength but 
relatively high mass, and hence high inertial resistance to the short duration applied forces usually associated with a 
vehicle impact event. It is therefore generally more useful to instead consider the applied impulse and momentum 
transfer. 

B.3  Applied impulse 
For a car impacting a wall at an angle of 20 degrees, the force imparted on a wall can be approximated as a 
triangular impulse of overall duration 100mS. This allows calculation of the approximate peak force, F, as indicated 
on Figure B1. 

 
Figure B1  Calculation of applied impulse 

 
 
Note that in practice the precise form of the force-time history will depend on the specific characteristics of the 
vehicle and parapet involved. Figure B2 shows the situation for MIRA test parapet 1 (1500kg Rover SD1 impact at 
100km/h), where the wall exhibited negligible visible damage following impact. 

 

Appendix B  Basic Impact Mechanics 

v 

v cos(20°) 

v sin(20°) 

Mass, m (kg)   Velocity, v (m/s) 

20° 

50 100 
Time (mS) 

Force (kN) 

 

Parapet 
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Figure B2  Recorded and idealised force-time histories: MIRA test parapet 1 [1] 

 

B.3  Momentum transfer 
The proportion of the applied impulse which will be transferred into movements of the masonry will depend on the 
initial resistance of the wall and the form of the applied force-time history. Various outcomes are possible, as 
indicated in Table B1. 

Momentum transfer considerations clearly show that a parapet wall composed of high density masonry can sustain 
a higher applied impulse than a comparable wall composed of low density masonry, and is therefore more capable 
of containing vehicles. 

 

B.4  Potential parapet modes of response 
The mechanical properties of the parapet will govern its specific mode of response, as indicated in Table B2.  
 
Table B2 Influence of mechanical properties on mode of response of parapet  

Mode 
Masonry unit-mortar 

bond strength 
Likely limiting mode of response 

A Low 
Punching failure, involving ejection of individual 
masonry units  

B High Fracture-lines delineating large panels of masonry 

C Very high Global failure of parapet (sliding and/or overturning) 

 
A failure involving formation of large panels of masonry is generally beneficial because the high inertia of the panels 
means that movements during the impact event will often be very small, often only becoming significant when the 
vehicle has safely been contained.  
 

0

100

200

300

400

0 50 100 150

Time (mS)

MIRA no.1

Idealized
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Table B1 Potential outcomes of the impulse generated during an impact event 

Applied impulse in 
relation to wall 

resistance 
Applied impulse and momentum transfer Outcome 

Low 

 

Parapet resists peak force without 
cracking.  
 
Vehicle contained (though may 
suffer significant damage, 
depending on impact speed). 

Medium 

 

Parapet cracks and remaining 
impulse / momentum is transferred 
to wall, leading to movement of the 
constituent masonry. 
 
Vehicle contained (though may 
suffer significant damage, 
depending on impact speed). 

High 

 

Parapet cracks, some momentum 
transfer to wall takes place but wall 
unable to sustain full impulse. 
 
Vehicle not contained and passes 
through the parapet. 

 
Key: 

  momentum transferred to masonry 

 

 
 
  

Time 

Force  

Wall failure & 
vehicle not 
contained 

F
cr
 

Time 

Force  

F
cr
 

Time 

Force  
Wall crack load Fcr 
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B.5  Influence of vehicle speed 

The applied impulse is a function of the mass m and velocity v of the impacting vehicle. For a 20° impact the 
impulse I can be calculated from: 

 
I = mv sin(20°) 

 
Therefore as vehicle speed increases, so the applied impulse increases, and it might therefore be expected that a 
vehicle travelling at an increased speed will always be more onerous to contain.  
 
Although this is true for a parapet which fails due to a global failure mode (e.g. overturning), in other circumstances 
the effectiveness of the parapet in resisting an impact will often be largely unaffected by vehicle speed (as indicated 
by the parapet performance charts contained in the present guidance document). Consider for example a masonry 
parapet which fails due to punching failure of individual, effectively isolated, masonry units in contact with the 
vehicle. Because a vehicle impacting at higher speed moves a greater distance parallel to the wall during a finite 
duration impact event, a correspondingly increased volume of masonry will be available to resist the impact, thereby 
mitigating the effect of the increased speed.  
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C.1 Introduction 

BS EN 1317-2:1998 describes performance classes and acceptance criteria for road restraint systems, i.e. 

- containment level, i.e. N1, N2, etc.; 

- impact severity levels; 

- deformation, as expressed by the working width, i.e. W1, W2, etc. 
 
BS EN 1317-2:1998 is writte
not directly applicable to masonry parapets. The extent to which masonry parapets are capable of complying with 
the prescribed model of behaviour is outlined in this Appendix. 
 
 
C.2 Acceptance criteria 
 
Safety barrier behaviour 
 
The extent to which the performance requirements described in Section 4.2 of BS EN 1317-2:1998 can be met by 
traditional masonry parapets is indicated in Table C1. 
 
 
Table C1  Safety barrier behaviour requirements 

BS EN 1317-2:1998 requirement Comment 

vehicle without complete breakage of the principal 
 

Masonry parapets are capable of containing and 
redirecting vehicles but complete breakage of 
longitudinal elements will generally occur.  

totally detached or present an undue hazard to other 
traffic,  

Parts of a masonry parapet will often become 
detached following impact; risk assessment 
calculations described in this guidance document can 
be used to determine whether the associated risk is 
acceptable. 

s of the safety barrier shall not penetrate 
 The particulate nature of masonry walls, and complex 

interactions which can occur on impact, means that it 
is not possible to eliminate the possibility of 
penetrations of the passenger compartment. 

compartment that can cause serious injuries are not 
 

 
Masonry parapets are generally designed without 
ground anchorages or fixings. 

  

Appendix C  Relationship with BS EN 1317 



60 Guidance on the Design, Assessment and Strengthening of Masonry Parapets on Highway Structures 

Vehicle behaviour 

The extent to which the vehicle behaviour requirements described in Section 4.3 of BS EN 1317-2:1998 can be met 
by traditional masonry parapets is indicated in Table C2. 
 
Table C2  Vehicle behaviour requirements 

BS EN 1317-2:1998 requirement Comment 

 

Can be expected to be satisfied if vehicle 
contained according to the parapet 
performance charts given in the present 
guidance document. 

 

The vehicle will stay within a prescribed 
impact. 

 
 
Impact severity 

Accident Severity Index (ASI) values were extracted from the models used to produce the parapet performance 
charts presented in the present guide. The ASI values extracted were found to be strongly related to vehicle speed, 
and somewhat insensitive to specific parapet response. Impact severity levels A, B and C, as defined in BS EN 
1317-2:1998, can be derived from these ASI values, as indicated on Table C3. 
 
Table C3  Impact severity level computed from simulations 

Speed ASI (min) ASI (max) Impact Severity Level* 

80km/h 0.58 0.87 A (ASI < 1.0)  

110km/h 0.91 1.28 B (1.0 < ASI < 1.4) 

*Based on ASI only as PHD not computed 
 
Note that the above ASI values are comparable to those derived from actual vehicle impact tests undertaken by the 
County Surveyors Society at MIRA [1], which ranged from 0.76 to 1.21, for various 60mph and 70mph impact tests. 
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Safety barrier deformation 

BS EN 1317-
 

 
In an impact event involving a ma
way in which a masonry parapet resists an applied impact: sections of a parapet will often become dislodged during 
the impact event, and may be ejected at a relatively high velocity (as indicated in the parapet performance charts 
contained in the present guidance document). 
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D.1 Background 

The good practice guidance contained here is largely taken from BS6779-4 [2]. 
 
D.2 Guidance (after BS6779-4) 

Vertical movement joints should be provided in the parapets where appropriate. The joint width should be a minimum 
of 20mm. If necessary, to prevent the ingress of material, the joint should be filled with a durable soft joint filler of the 
closed cell flexible foamed plastic type. 

The containment / parapet performance charts have been devised for parapets without any movement joints and are 
applicable for impacts occurring a minimum distance of 1m from the end of the parapet. The charts are applicable for 
parapets with movement joints, and panel lengths not less than 10m, providing there is a provision for shear transfer 
across the joints. 

The shear transfer requirements which are related to the ductility of the shear transfer devices should conform to 
Table D1. Intermediate values may be determined by linear interpolation. 

 

Table D1 Shear transfer at movement joints 

Average shear force sustained prior to 
failure (kN) 

Defection across movement joint at 
failure (mm) 

110 0 

45 20 

22 50 

 

The shear transfer arrangement should consist of grade 316 S 33 stainless steel plates or dowel bars, or similar, 
crossing the joint and suitably debonded on one side of the joint to permit expansion and contraction of the parapet. 
Tests should be carried out if necessary to determine the strength of the shear transfer devices with the particular 
masonry to be used for construction. A partial safety factor Ym = 2 should be applied to the average of the test results 

for design purposes. 

Tests using a class (iii) mortar (1:1:6) in accordance with BS 5628-3 [21] (equivalent to an M4 mortar as defined in the 
UK National Annex of BS EN 1996-1-1) in conjunction with class B engineering clay bricks in accordance with BS 
3921 [22] showed that 10mm diameter stainless steel dowel bars in 12mm thick bed joints had an average shear 
resistance of 4.2kN per dowel over a deflection in excess of 50mm prior to failure. There were a pair of dowels in a 
bed joint projecting 150mm each side of the joint. Stainless steel dowel bars 16mm diameter in 20mm thick bed 
joints had a similar average shear resistance. Failure in each case was due to loss of adhesion between the mortar 
and bricks of the bed joints in the masonry. The specified moisture contents of the bricks were in the range 0% to 
2.5% and the initial rates of suction were in the range 0.13kg/m2/min to 0.19kg/m2/min. 

These tests show that, taking into account the partial safety factor, two dowel bars in each bed joint in the brick 
masonry in a 1m high parapet will provide an adequate shear connection. 

 

Appendix D  Movement Joints in Unreinforced Masonry Parapets 
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E.1 Background

The good practice guidance contained here is based on that given in BS6779-4 [2].

E.2 Containment chart: design of drystone parapets, and unreinforced masonry parapets with masonry 
units of slate or similar smooth or impervious material

The parapets should be designed or assessed using the containment chart in Figure E1.

NOTE: The chart is based on an assumed effective density of the parapet of 1920kg/m3 which is equivalent to the
parapet being constructed of stone with a density of 2250kg/m3 and having a 15% void ratio (i.e. 15% voids 85% 
stone). The sketch shown in Figure E2 shows the basis of the determination of the void ratio.

Drystone parapets, mortared slate parapets and other mortared stone parapets constructed of impervious smooth
stones should be assumed to provide containment by mass alone. Consequently, when designing parapets using
the containment chart, adjustments should be made to the parapet thickness determined from the chart, to take into
account any variations in effective density of the stone, i.e. parapet thickness required = thickness determined from 
chart x (1920 / effective density of masonry to be used).

Figure E2 Drystone construction showing the basis for determining voids percentage

Appendix E Containment of Drystone Parapets
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F.1 Design objective

Enhance the containment capacity of an existing 10m long, 1m high, 330mm thick, weakly mortared brickwork 
parapet to allow it to contain cars travelling at 110km/h. 

F.2 Design approach 

-bond strength needs to be upgraded to 
-bond strength. (The example parapet is only capable of containing a car travelling 

at 110km/h if the shear- .)

Steps:

1. Assume a notional quasi-static out-of-plane force F is applied at the end of the parapet. 

2. Calculate the maximum bending moment in the parapet Mstatic when F is sufficient to cause sliding of the parapet 
on its base (F= Fstatic).

3. Specify reinforcement to (i) ensure Mstatic can be resisted, and (ii) to enhance the overall ductility of the parapet.

Commentary:  The rationale is that although the peak force associated with an actual vehicle impact will generally 
be much higher than Fstatic, and once movements commence inertial effects will change the bending moment 
distribution (leading to moments in excess of Mstatic in some locations), the reinforced section can be designed to 
deform in a ductile manner and to hold the parapet together during a short duration impact event, absorbing energy 
and ensuring that a large volume of masonry is mobilised in resisting the impact. (This has been verified in 
laboratory impact tests [10].)

However, it should be noted that introduction of reinforcement which ensures the parapet behaves effectively as a 
monolith will increase the likelihood of the entire reinforced parapet from sliding off the supporting structure and/or 
overturning following a heavy impact. Although this will often occur after an errant car has successfully been 
contained, additional checks should be made if this type of behaviour is unacceptable.

F.3 Calculations

Design data: 

Estimated wall density = 2200kg/m3

Coefficient of friction at base = 0.6

Acceleration due to gravity = 9.81m/s2

Steps:

1. Calculate out-of-plane quasi-static force applied at end of wall required to cause parapet to slide on its base (in 
the mode indicated in Figure F1):

wrotstatic lxqF 2*

Appendix F Retrofit Reinforcement: Sample Calculation
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Figure F1 Assumed mode of response of parapet

Where is the resistance to sliding per unit length, wl is the wall length and rotx is the distance of the centre of 

rotation of the parapet from the leading end, which from statics can be shown to be equal to 
2

wl , leaving:

wstatic lqF **414.0

2. Calculate maximum pseudo-static moment Mstatic in the parapet: 

The moment at any point x from the leading edge of the parapet can be determined from statics to be:

xlq
xq

M wx ***414.0
2

* 2

The maximum moment will occur when the shear force is zero, i.e. when wlx *414.0 , so that the maximum 

moment can be shown to be:

wstatic lqM 2**0875.0

Substituting gmq x ** gives: 

wxstatic lgmM 2****0875.0

Where is the coefficient of friction, xm is the mass per metre length and g is the acceleration due to gravity. 

Now substituting in the design data gives:

kNm36.6Nm10*6.3610*81.9*33.0*2200*6.0*0875.0 32
staticM

3. Design reinforcement to provide Mstatic

Diagonal reinforcement (see Figure 4) should be designed to ensure the moment Mstatic = 36.6kNm can be resisted 
along the full length of the parapet, according to the principles outlined in BS EN1996. Reduced partial factors can 
be used at the discretion of the engineer to account for the fact that the construction is not new. The reinforcement 
should be detailed to ensure the response is as ductile as possible.
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G.1 Introduction 

Risk is calculated as: likelihood x consequence 

The likelihood is the inverse of the frequency of impa  

Note that the risk calculations described herein differ from those applied previously in a number of respects  see 
Appendix H. 

G.2 Likelihood 

When site data is not available a formula for the return period can be used: 

T0 = f (AADT) * (EF)     Equation G1 

Where:  

i. AADT is the average daily two-way daily traffic flow on the road adjacent to the parapet (or twice the AADT on 
roads with one-way traffic). 

ii. EF 
derived from Table G1. 

iii. T0 is a notional return period. This notional return period is calculated and is used as 
component of the risk calculation. This may be expressed in further definitions as TC80 (for general vehicles at 
80km/h), TC110 (for general vehicles at 110km/h), or TL60 (LGV at 60km/h). 

G.2 Environmental Factor 

There are several other potential factors which influence likelihood. Using principles described in IAN97/07 [18], the 
environmental modification factor to use is the sum of the factors listed in Table G1, selected from those used in 
Appendix B tables in IAN97/07 that affect likelihood. As far as reasonably possible, the same scoring has been used 
to maintain consistency and to enable any existing analysis to be re-used without significant re-working.  

Lowest possible total of these environmental factors = 5 (best possible condition) 

Highest possible total = 34 (worst condition) 
  

Appendix G  Calculation of Risk 
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Table G1  Environmental Factors (based on IAN97/07) 

Factor Score (derived from IAN97/07) 

Road Alignment (Horizontal)  Score 1 for straight road with at least 7.3m carriageway 

Score 3 for straight less than 7.3m carriageway or curved at least 7.3m carriageway 

Score 7 for curved road less than 7.3m carriageway 

Score 10 for reverse curves less than 7.3m carriageway 

Road Alignment (Vertical) 

 

Score 1 for level or constant grade 

Score 2 for gentle gradients and/or slight hump back 

Score 3 for moderate gradients and/or hump back with inter-visibility 

Score 5 for steep gradients and/or hump back with no inter-visibility 

Speed of traffic Score 1 for <10mph 

Score 3 for <30mph (or less) 

Score 5 for <50mph 

Score 7 for <70mph 

Road Verges and Footpaths 

 

Score 1 for at least 2m on both sides 

Score 2 for at least 1m on both sides 

Score 3 for one or both verges less than 1m 

Other hazards increasing 
likelihood of RTA.  

Score 1 for no obvious additional hazards, including no significant risk of freezing 

Score 5 for single site specific hazard including risk of freezing conditions. 

Score 9 for multiple minor hazards or single major hazard. e.g.: farm access, road 
junction, private driveway, lay-by, nearby junctions, bus stop, school, hospital, additional 
visibility limits (consider overhanging trees), etc 

 
 

G.3 Derivation of Return Period T0  

The maximum result for the Site Environmental factor (EF) is 34.  

The following means of calculating T0 is proposed:  

   T0 = K (35  EF) / (AADT score)      Equation G2 

This notional formula is arranged so that a high environmental factor (poor road conditions) and high traffic flow will 
reduce the return period.  

K is a constant used to adjust the range of T0 to within what may be realistically anticipated, and is derived 
empirically. When making an empirical estimation for a reasonable value of K, it is to be noted that the extreme 
ranges of EF are unlikely to occur because of the unusual combination of factors required (such as wide, straight but 
very slow speed roads, or otherwise narrow, sharply curving but high speed roads). EF is more likely to vary 
between a minimum of 10 and maximum of 30.  

After testing various values, a K value of 5 is considered to give a realistic result for T0 and which results in a 
meaningful risk calculation.  
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given in Table G2 has been derived specifically for this purpose:  

 

Table G2   

AADT Score AADT Typical description 

1 <50 
Minor single lane  

(generally green lane or farm access) 

2 50  100 
Minor two lane 

(generally unclassified) 

3 101  500 
Local access 

(generally C or B class) 

4 501  1,500 Collector (no buses) 
(generally 'Other Strategic' 
roads) 

5 1,501  5,000 
Collector  

(with buses or industrial) 

4 501  1,500 

(generally 'Primary Routes') 

Usually, roads of sufficient size will either have a known AADT or 
 

5 1,501  5,000 

6 5,001  20,000 

7 20,001  40,000 

8 40,001  60,000 

 

 

Where AADT figures are not known, they can be estimated based on the class and character of the road.  

The following Figure G1 is adapted from Austroads Pavement Structural Design Guide (AGPT02/10) [23], and can 
be used to identify the road types (as 2). 
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Figure G1: Typical Descriptions of Road Types 

 

 

The notional return period T0 can then be calculated from:  

T0 = 5 * (35  EF) / (AADT score)     Equation G2 

The results are listed in Table G formula. 

 

G.4 Consideration of LGV impact  

As noted in the introduction, impact performance of unreinforced masonry parapets is considered only for N1 and 
N2 containment levels, and so LGV impact is not included.  It is, however, possible to apply the same process as for 
other vehicles to arrive at a return period TL60 (see Table 7). The results arising from this are more notional than 
precise, but could be used as an additional tool for the purpose of comparisons of different sites and for prioritisation 
work. It is suggested that this is more useful where the LGV flow is significantly different at the sites being 
compared. 

24] the road accident fatality rates on all roads for cars are given as four 
times the rate for LGVs.  

From Equation G2, TL60 can then be calculated from: 

T0 = 20 * (35  EF) / (AADT score)     Equation G2A 

Table G3: T0 for different site environmental factors (from Table G1) and AADT Score (from Table G2)  
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AADT  8 7 6 5 4 3 2 1 

EF T0 

5 18.750 21.429 25.000 30.000 37.500 50.000 75.000 150.000 

6 18.125 20.714 24.167 29.000 36.250 48.333 72.500 145.000 

7 17.500 20.000 23.333 28.000 35.000 46.667 70.000 140.000 

8 16.875 19.286 22.500 27.000 33.750 45.000 67.500 135.000 

9 16.250 18.571 21.667 26.000 32.500 43.333 65.000 130.000 

10 15.625 17.857 20.833 25.000 31.250 41.667 62.500 125.000 

11 15.000 17.143 20.000 24.000 30.000 40.000 60.000 120.000 

12 14.375 16.429 19.167 23.000 28.750 38.333 57.500 115.000 

13 13.750 15.714 18.333 22.000 27.500 36.667 55.000 110.000 

14 13.125 15.000 17.500 21.000 26.250 35.000 52.500 105.000 

15 12.500 14.286 16.667 20.000 25.000 33.333 50.000 100.000 

16 11.875 13.571 15.833 19.000 23.750 31.667 47.500 95.000 

17 11.250 12.857 15.000 18.000 22.500 30.000 45.000 90.000 

18 10.625 12.143 14.167 17.000 21.250 28.333 42.500 85.000 

19 10.000 11.429 13.333 16.000 20.000 26.667 40.000 80.000 

20 9.375 10.714 12.500 15.000 18.750 25.000 37.500 75.000 

21 8.750 10.000 11.667 14.000 17.500 23.333 35.000 70.000 

22 8.125 9.286 10.833 13.000 16.250 21.667 32.500 65.000 

23 7.500 8.571 10.000 12.000 15.000 20.000 30.000 60.000 

24 6.875 7.857 9.167 11.000 13.750 18.333 27.500 55.000 

25 6.250 7.143 8.333 10.000 12.500 16.667 25.000 50.000 

26 5.625 6.429 7.500 9.000 11.250 15.000 22.500 45.000 

27 5.000 5.714 6.667 8.000 10.000 13.333 20.000 40.000 

28 4.375 5.000 5.833 7.000 8.750 11.667 17.500 35.000 

29 3.750 4.286 5.000 6.000 7.500 10.000 15.000 30.000 

30 3.125 3.571 4.167 5.000 6.250 8.333 12.500 25.000 

31 2.500 2.857 3.333 4.000 5.000 6.667 10.000 20.000 

32 1.875 2.143 2.500 3.000 3.750 5.000 7.500 15.000 

33 1.250 1.429 1.667 2.000 2.500 3.333 5.000 10.000 

34 0.625 0.714 0.833 1.000 1.250 1.667 2.500 5.000 

 

G.4 Consequence calculations  
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Spacing of vehicles is based on simple calculation of speed divided by rate of flow, and can be calculated 
using equation G3:

1000*

24
AADT

km/hin speedRoad
Spacing Equation G3

The number of vehicles struck directly, Ndirect can be calculated as debris spread divided by spacing, and can be 
calculated using equation G4:

Spacing

spreadDebris
directN Equation G4

Where debris spread is derived from Table 8, and spacing from Equation G3. 
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G.5 Calculation for indirect impacts

be struck directly by falling debris, and other vehicles will collide with fallen debris because 
they cannot stop in time. 

Research shows that the 50th percentile speed for seriously injured drivers is 24 mph and for fatally injured drivers 
is 34 mph [25].

A 30mph road presents relatively low risk, because drivers may be assumed to have opportunity to mitigate impact 
by swerving, and are in any event unlikely to be fatally injured.  

wn to 34mph

Results for this calculation are shown in Table G4, (the source data for the thinking and stopping distance are 
published in the Highway Code).

The number of vehicles which are in indirect impact with debris, Nindirect is calculated as the number of vehicles not 
able to slow down to a safe speed in time to avoid hitting debris, and can be calculated from equation G5.

Table G4   Number of vulnerable vehicles indirectly affected per impact event

Road Speed
mph 40 50 60 70

km/h 64 80 97 113

Thinking distance 12 15 18 21

Stopping distance 24 38 55 75

Slowing distance (to safer speed, 34mph) 20.4 25.8 31.2 36.4

Total slowing distance to safer speed 32.8 40.8 49.2 57.4

Spacing

speedsafer  todistanceslowingTotal
indirectN Equation G5

Where the total slowing distance to safer speed is derived from Table G4, and spacing from equation G3.
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Summary 
 
Other existing risk assessment methods for bridge parapets are discussed, namely the method described in IAN 
97/07 [18], a method used for TfL bridges [26], and that described in BS6779 part 4 [2].  
 
 
IAN 97/07 method 
 
IAN 97/07 (Interim Advice Note 97/07, Assessment and Upgrading of Existing Vehicle Parapets) is a risk based 
approach, based on TD19/06. 
 
IAN 97/07 uses a step by step system of risk assessment, which can be summarised very briefly as follows:  
 

1) Assess Rinc = incursion risk ranking score, based on 14 factors. 

2) Assess remnant proportion of capacity compared to required capacity. 

3) Assess remnant proportion of capacity compared .  

4) Assess RALARP: based on the formula:  
(Traffic Volume)  x  (Containment factor)  x  (site features factor)  x (ease of upgrade). 

 
An advantage of using IAN 97/07 for the assessment of masonry parapets is that it is an established method, with a 
body of experience in using it already established. It would also allow for possible comparison with other non-
masonry parapets which also use the same methods. 
 
However, there are various difficulties to consider if trying to apply IAN 97/07 specifically to masonry parapets, 
which are summarised briefly below (in no particular order): 

 

1. 
comparison is suitable when comparing different types of parapets, but not so useful when comparing 
different masonry parapets.  

2. The method requires assessment of remnant capacity to be expressed as a proportion of required 
containment. This is based on engineering judgement in three categories: 0-33%, 33-66% and 66-100%: this 
may be difficult to judge for masonry parapets. 

3. 
considered.   

4.  safety issue, and seems to be in a different category to all other 
factors considered. It may be better to assess this completely separately, after the other safety related items. 

5. Rinc is noted as not needing to be assessed in road over road cases where the two-way AADT on either the 

upper or lower road is less than 25000. This would eliminate the need to use Rinc for most if not all masonry 
parapets which tend not to feature on roads with such high volumes of traffic. 

6. There are no factors related to the risk of detachment of masonry, which is an important risk factor.  

Appendix H  Comparison with other risk assessment approaches for 
bridge parapets. 
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7. The outcome is to define risk into one of: very low , low , medium or high
is designated for upgrading. These rather definite outcomes from the risk assessment may result in a large 
proportion of masonry parapets being designated for upgrading, which would be impractical.

The following points apply generally to the IAN 97/07 process, and not only to how it can be applied to masonry 
parapets:

8. It is unclear how the scoring of the 14 factors for Rinc are weighted. For example, scoring for factors ranges 
between 1-24 (for approach containment) to 1-3 (for verges and footpath). This means that there has been 
some decision that approach containment is effectively eight times more important than the width of the 
verges, but it is not clear how this decision has been reached.

9.
risk factors. The ease of upgrade factor would seem to fit better into a cost-benefit or value management 
exercise to be carried out subsequent and separate to the risk assessment.   

10. The factor for road speed considers the actual speed, but this is difficult to judge and may need a traffic 
survey to be carried out this may not be practical to carry out for every parapet. 

Parts of the IAN97/07 method are however used or applied herein:

The basic principle of how RALARP is calculated by multiplying factors together including one based on traffic 
volume and one based on the site factors.  

TfL Method 

A parapet prioritisation study was carried out by Hyder for TfL in June 2009 [26]. The Hyder study recognised that 
IAN 97/07 is best suited for use on the stock of structures for which the Highways Agency is responsible, and 
attempted to devise a method more suited to the TfL road network. 

The stated intent of the Hyder study was to p
relevant factors were first identified, based on the same principle as the factors identified in IAN97/07. An algorithm 
was used to derive a weighting / scoring system for the identified factors. 

The key formula used for the scoring of parapets was:

Ps = Is*Cs / Mf

Where: 

Ps

Is = incidental score: based on properties of the road and parapet (8 factors)

Cs = consequential score based only on what the parapet is over. 

Mf = mitigation factor based on 6 factors:  

was also used, based on how much is known about the bridge in 
question. 
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However, there are various disadvantages or difficulties to consider if trying to apply the TfL method specifically to 
masonry parapets, which are summarised briefly below (in no particular order): 

1. There are 8 factors used to determine ncidental score  and 4 factors used to determine the itigation 
factor , but all of these apply to any sort of parapet, potentially leading to inadequate differentiation between 
different masonry parapets.  

2. en considering only masonry parapets. 

3. The mitigating factors include a 
judgement.  

4. The factors do not account for the risks associated with detached masonry. 
 

The following points apply generally to the TfL method, and not only to how it may apply to masonry parapets: 

1. The 8 factors used to determine the incidence factor include volume of traffic. In comparison IAN 97/07 
considers traffic volume important enough to be an independent factor. The inclusion of volume into the 
general calculation reduces its impact on the overall outcome.  

2. 
tor but would seem to fit just as well in the incidence factor list.  

3. The confidence factor seems like a good idea in principle, but the scoring system attributed to the availability 
of the various factors used to build up the score seems a little arbitrary. For example, there is a score of 
between 0 and 6 depending on the completeness of the Form 277 record. The result, built up from adding up 
scores from several factors, gives a rather scientific appearance to what is really an estimation tool.  

4. The algorithm used to determine the weighting factor is based on the analytical hierarchy technique. This 
system assumes that the parameters are initially theoretically equal, and then a weighting is arrived at by 
comparing each pair in turn. The outcome is a weighting factor expressed to three decimal places, appearing 
to be very precise but actually arrived at by a series of engineering judgements between separate pairs of 
factors.  

 

The scoring 

 

The value of IS (Incidental Score) is calculated using the following: 
- Traffic volume. 
- Traffic Speed. 
- Traffic Manoeuvres/Junctions. 
- Highway Alignment (Horizontal and vertical) 
- Carriageway Configuration. 
- Parapet Length (including proportion protected by safety fence)  
- Visibility  
- Highway Interactions (other issues about road use etc).  

 

. 
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The value of CS (Consequential Score) is calculated using the following: 
- Railways 
- Industrial and utility complexes 
- Highway adjacent to or below 
- Schools, hospitals, social complexes, car parks and recreational areas. 
- Residential Properties 

 
Value of Mf (Mitigation Factor) is calculated using the following: 

- Parapet Type. 
- Proximity to Carriageway.  
- Orientation to Direction of Travel.  
- Parapet Condition Factor.  
- Additional Vehicle Restraint System.  

 
Score Calculation: 
 
The table below describes the scoring system and provides a commentary on how it is implemented for a specific 
example (extracted from the Hyder/TfL document). 

Table H1: TfL Scoring system and examples 

 System Example 

1 
Various Characteristics are attributed to each 
factor 

Characteristics of parapets types are listed, 
ranging from Cast Iron through to P6 or H4a. 

2 
A Value is attributed to each factor. The 
decision for this value appears to be based on 
judgement alone, and no explanation is given.    

Values range from 10 for H4a or P6 type parapets 
to 1 for cast iron or P4 types (masonry parapets 
are given a value of 3) 

3 
The Factor is decided, in some way 
proportional to the Value.  

In the example of parapet type, the Factor is equal 
to the Value. 

4 
The Range is simply the difference between the 
maximum and minimum possible Factor.  

The range for parapet types is from 1 to 10. 

5 
Divisor: the figure required to reduce all Factors 
to unity. This has the effect of producing a 
maximum of 1. 

The Divisor for parapet types is 10, so that even 
the maximum possible factor is 10/10 = 1. 

6 

Weighting is applied using a weighting factor 
derived from analytical hierarchy techniques.  
These weightings are developed empirically 
using an actuary approach to the analysis by 
comparing the relative effects of each pair of 
parameters in turn, starting with the assumption 
that they are initially at least equal. 

In the example quoted, the weighting factor is 
derived as 0.259 
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Parts of the TfL method are used herein: 
 

- The basic principle of breaking down the large number of factors into separate groups, 
, serving the purpose of making the final result more sensitive to 

individual factors. This principle appears to increase sensitivity of the calculation to individual factors when 
compared to the IAN97/07 method, in which factors are simply added together. 

- A very wide range of factors are used in the calculations, and it is intended to use the most relevant of these for 
the risk assessment model for masonry parapets.  

 

BS6779 part 4 
 
Risk Assessment 
The assessment of risk in Annex A of the British Standard is based on FAR (fatal accident rate, per 100 million 
hours of exposure, described in a paper by Hambly and Hambly [16]). This risk assessment process involves 
calculating likelihood of detached masonry striking someone or something in the hazard zone below the parapet. 
The Hambly and Hambly paper gave a list, league table , of approximate FAR values of actual events based on 
records.  

Other workers have developed or cited the FAR assessment approach, including Vrouwenvelder et al. [27].  

The calculations are based on estimating the size of the hazard zone (from charts based on height above datum), 
time taken for masonry to fall, estimated frequency of impacts and the frequency of occupancy of the hazard zone. 

broadly acceptable) or can simply be used for risk ranking.  

This process deals specifically with detachment of masonry, a topic that other risk ranking methodologies do not 
address. Thus the approach is used in the risk assessment method described in the present document. 
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I1

Appendix I Risk Assessment Flowcharts
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I2
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Example 1:  Country road over road

Known Data: road with AADT of 4,500, 2 lane country road, width less than 7.5m, curved horizontal 

alignment, slight gradient,  traffic moves at up to 70mph, wall height 1.80m, wall thickness 510mm, wall

height above datum at 8m to mid-height of parapet, low mortar strength,  LGV volume: 101-500 per day 

and a single site specific hazard. For road below, traffic moves at 60mph, 5150 AADT.  

Step 1: Likelihood return period of vehicle impact

Use Flow Chart I1:

From Table G1: Environmental factor: 

Factor Score 

Road Alignment (Horizontal) Score 7 for curved road less than 7.3m carriageway

Road Alignment (Vertical) Score 2 for gentle gradients and/or slight hump back

Speed of traffic Score 7 for <70mph

Road Verges and Footpaths Score 3 for one or both verges less than 1m

Other hazards increasing likelihood of 
RTA

Score 5 for single site specific hazard including risk of freezing 
conditions. 

Total     24

From Table G2: For AADT = 4500: AADT score = 5

From Table G3: For EF of 24, AADT Score of 5: Return Period T0 = 11.0 years

Step 2: Consequence - number of vehicles affected

Use Flow Chart I2: 

From Fig 3: (Vehicle impact 70mph = 110km/h, wall 1800mm high, 510mm thick, low strength mortar):

debris exit velocity of 3.5m/s

vehicle is contained.

From Table 8: (parapet mid-point at 8m high above road below, and using exit velocity of 3.5m/s 
derived): 

distance (spread) of debris of 9.0m 

From equation G3: (vehicles on local road speed of 60mph (97kph), AADT = 5,150): 

spacing = 452m

From equation G4:
Calculate direct vulnerable vehicles struck per impact = spread / spacing = 9.0 / 452 = 0.020 (Ndirect)

Appendix J Sample Risk Assessment Calculations
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Use Table G4: road speed 60mph, total distance slowing to safer speed is 49.2m

From equation G5: calculate indirect vulnerable vehicles struck per impact = 49.2 / 452 = 0.109 (Nindirect)

Use equation 1:  (Note: from Fig 3, vehicle is contained so Nerrant = 0)

Total vulnerable vehicles struck per impact N = 0.020 + 0.109 = 0.129

Step 3: Fatal Accident Rate, FAR

From equation 3:

FAR = 100,000,000 / [(365 * 24 * T0) / N]

        = 100,000,000 / [(365 * 24 * 11.0) / 0.129]

        = 134

Comparing to Table 6, this is more dangerous than walking beside a road (20) and less dangerous than 

travel by motorcycle (300).

If we wish to take into account LGV impact: 

Step 1: Likelihood return period of vehicle impact

From Table G2: For maximum LGV AADT = 500: AADT score = 3

From equation G2A TL60 = K * (35 EF) / (AADT score)

        = 20 * (35 24) / 3

        = 73.3 years

Step 2: Consequence number of vehicles affected

To calculate total vulnerable struck (direct and indirect) per impact N, assume: 

Errant vehicle, Nerrant = 1

Ndirect and Nindirect assumed same as normal vehicle calculation.

    N = 1.0 + 0.020 + 0.110 = 1.130

Step 3: Fatal Accident Rate, FAR

From equation 3:

FAR = 100,000,000 / [(365 * 24 * TL60) / N]

                      = 100,000,000 / [(365 * 24 * 73.3) / 1.1308]

                      = 176

   Total FAR = 134 + 176 = 310    
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Example 2: Wychnor Bridge Junction (road over canal)

(Example, photograph and map with permission from Canal & River Trust,
formerly British Waterways)

Known Data: A38: from DfT website AADT = 45,302 (on A38),

assume 50mph, curved road, close to junction, wall height above datum

at 2m to mid-height of parapet, 1800mm high and 450mm thick.

Step 1: Likelihood return period of vehicle impact

Use Flow Chart I1: 

From Table G1: Environmental factor: 

Factor Score 

Road Alignment (Horizontal) Score 7 for curved road less than 
7.3m carriageway

Road Alignment (Vertical) Score 2 for gentle gradients and/or 
slight hump back

Speed of traffic Score 7 for <70mph

Road Verges and Footpaths Score 3 for one or both verges less 
than 1m

Other hazards increasing 
likelihood of RTA. 

Score 5 for single site specific 
hazard (Junction)

Total 24

From Table G2: For AADT = 45,300: AADT score = 8

From Table G3: For EF of 24, AADT Score of 8: Return Period T0 = 6.875 years

Step 2: Consequence number of vehicles affected

Use Flow Chart I2: 

From Fig 2: (car impact at 80km/h, wall 1800mm high, 450mm thick, assumed low strength mortar)

debris exit velocity of 3.0m/s

vehicle is contained.

As this is a canal, a decision would need to be made if to proceed with risk assessment because of the 
low traffic volume vulnerable to falling debris. The towpath should also be considered, as it may be a 
through path with potential volume of pedestrian traffic for some local route. 

The following gives an example calculation taking barge traffic but not pedestrians, and assumes barge 
spacing at 200m:

From Table 8: (for height above datum at 2m to mid-height of parapet and using exit velocity of 3m/s): 

distance (spread) of debris of 4m
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From equation G4:
Calculate direct vulnerable vehicles struck per impact = spread / spacing = 4.0 / 200 = 0.020 (Ndirect)

For canal traffic: assume indirect is negligible.

Use equation 1:  (Note: from Fig 3, vehicle is contained so Nerrant = 0)

Total vulnerable vehicles struck per impact N = 0.020

Step 3: Fatal Accident Ratio, FAR

From equation 3:

FAR = 100,000,000 / [(365 * 24 * T0) / N]

                = 100,000,000 / [(365 * 24 * 6.875) / 0.020] 

        = 33

Comparing to Table 6, this is a higher than walking beside a road (20). 

If we wish to take into account LGV impact: 

Step 1: Likelihood return period of vehicle impact

In this case, LGV flow is unknown but based on the road type and using Table G2, AADT score = 3

From equation G2A TL60 = K * (35 EF) / (AADT score)

= 20 * (35 24) / 3

= 73.3 years

Step 2: Consequence number of vehicles affected

To calculate total vulnerable struck (direct and indirect) per impact N, assume: 

Errant vehicle, Nerrant = 1

Ndirect and Nindirect assumed same as normal vehicle calculation. 

    N = 1.0 + 0.020 = 1.020

Step 3: Fatal Accident Rate, FAR

From equation 3:

FAR = 100,000,000 / [(365 * 24 * TL60) / N]

           = 100,000,000 / [(365 * 24 * 73.3) / 1.020]

           = 159

     Total FAR = 33 + 159 = 192
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Example 3: Bloxwich Road Bridge (road over rail, Walsall) 

Required AADT flow is at the bridge shown with red circle. 

From the DfT website: (http://www.dft.gov.uk/matrix/): 

Nearest AADT record is shown with green dot, given as = 17,056 
 
Assume flow at required point is approximately one third = 5,400 
(based on brief observations) 
  
Speed limit is 30mph but for risk assessment assume 40mph 
  
Two footpaths at either end of the bridge of at least 1.0m width, 
parapet wall 1200mm high, 410mm thick and high strength mortar. 
 
 
 
 
 
 
 
 

Reproduced from Ordnance Survey digital 
map data © Crown copyright 2012.  
All rights reserved. Licence number 
0100031673 

 
 
 
 
 
(AECOM photo) 
 
 
Step 1: Likelihood  number of vehicles affected 
 
Use Flow Chart 1: Environmental factor: 
 

Factor Score (derived from IAN97/07) 

Road Alignment (Horizontal)  Score 3 for straight less than 7.3m carriageway or curved at least 7.3m 
carriageway 

Road Alignment (Vertical) Score 2 for gentle gradients and/or slight hump back 

Speed of traffic Score 5 for <50mph 

Road Verges and Footpaths Score 2 for at least 1m on both sides 

Other hazards increasing 
likelihood of RTA.  

Score 5 for single site specific hazard including risk of freezing conditions. 
(nearby junction and commercial entrance) 

Total 17 

 
From Table G2: for AADT = 5400, AADT score = 6 

From Table G3: for EF = 17, AADT score = 6:  Return Period T0 = 15.0 years 
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Step 2: Consequence number of vehicles affected

Use Flow Chart I2: 

From Fig 2: (car impact at 80km/h, wall 1200mm high, 410mm thick, high strength mortar)

debris exit velocity of 2.5m/s

vehicle is contained.

Factor Score (derived from IAN97/07)

Permissible line speed Score 1: up to 45mph

Type of rail traffic Score 5: sliding door multiple units 

Volume of rail traffic Score 12: very heavily used

Total 18

As described in item 6.6: Ndirect = 18 / 47 = 0.38

Step 3: Fatal Accident Rate, FAR

From equation 3:

FAR = 100,000,000 / [(365 * 24 * T0) / N]

        = 100,000,000 / [(365 * 24 * 15) / 0.38] = 289

Comparing to Table 6, this is more dangerous than walking beside a road and less dangerous than travel 
by motorcycle (300).  
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Example 4: Typical rural road over other rural road

This example is given as typical because many masonry parapets are on roads with unknown flow data. 

A local minor two way road with no recorded AADT and not in a speed limit area passes over similar 
local minor road.  

With reference to Table G1, on a scale 5 34

The parapet is 0.450m thick stone with unknown mortar, assumed to be of low strength, wall height 
above datum at 8m to mid-height of parapet

Step 1: Likelihood return period of vehicle impact

Use Flow Chart I1: 

Use Environmental factor of 15: 

From Table G2: Minor two way road AADT score = 2

From Table G3: for EF = 15, AADT score = 2:  T0 = 50 years

Step 2: Consequence number of vehicles affected

Use Flow Chart I2: 

From Fig 3: (For most extreme risk assessment, review impact at 110km/h: wall 1200mm high, 450m 
thick, low strength)

Debris exit velocity of 5.20m/s. 

The vehicle is contained.

From Table 8: (for wall height above datum at 8m to mid-height of parapet, and using exit velocity of 
5.20m/s derived): 

Distance (spread) of debris of 14m (rounded up)

From equation G3:

For vehicles on local road (below) speed of 30mph (48kph), at low AADT, spacing is very high: For 
purpose of risk assessment, use maximum 100m: 

From equation G4:
Calculate direct vulnerable vehicles struck per impact = spread / spacing = 14 / 100 = 0.14 (Ndirect)

On a low volume use road, assume indirect is negligible. 

Use equation 1:  (Note: from Fig 3, vehicle is contained so Nerrant = 0)

Total vulnerable vehicles struck per impact N = 0.14

Step 3: Fatal Accident Rate, FAR

From equation 3:

FAR = 100,000,000 / [(365 * 24 * T0) / N]

                      = 100,000,000 / [(365 * 24 * 50) / 0.14]

                      = 32

Comparing to the values given in Table 6, this is more than walking beside a road (20) 
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